| | Background Work Supporting the Evaluation of Feasibility and Initial Design of an Interim Cap for the Aerovox Nearshore Area - 30MAR2017 | | | | | | | |----|--|--|--|---|--------------------------------|----------------------------|------------------------------| | | Information Requirement | Relevance | A. Scope of Work - Minimal | B. Scope of Work - Expanded | Lead(s) | Estimated
Schedule | Estimated Level of
Effort | | | An initial approximation of interim cap performance objectives is key in fully scoping the information requirements 1-11 below. | | | | | | | | 1 | Physical characterization of the nearshore area including the full width of the waterway | - presentation of data - impact of cap placement relative to full waterway | - use existing bathymetery and GIS to create cross sections and calculate areas | - create 3D visualization of waterway and subsurface | Mike Morris +
Dan Groher | A. 1 week
B. 2 weeks | A. \$3K
B. \$14K | | 2 | 3D extent of DNAPL beneath the nearshore area | determine the extent of required capdetermine areas with seepage potential | use existing boring data to create conservative
confirmed/probable and potential zones | - collection of additional shallow cores
to increase confidence in zone
boundaries | Mike Morris +
Dan Groher | A. 1 week
B. 2 weeks | A. \$3K
B. \$31K | | 3 | Groundwater discharge zones and discharge rates in the nearshore area | - design parameter for the cap
- assessment of potential alteration
of groundwater flow field by the cap | - use existing groundwater flow data from the Aerovox Phase 2 and 3 reports for screening level assessment - estimate conservative/"worst-case" potential discharge scenarios to determine if there are signficant data gaps | - expand on existing or develop a new
Modflow application to evaluate the
impace of the cap
- field measurement of discharge
parameters | Mike Morris +
Dan Groher | A. 2 months
B. 4 months | A. \$52K
B. \$88K | | 4 | Flux of dissolved phase contaminants | - design parameter for the cap
- assess impacts of delayed removal
of source | - use existing groundwater data and flux calculation from the Aerovox Phase 2 and Phase 3 reports for screening level assessment - field measurement of flux | - add transport to the groundwater
flow model application to evaluate
effectiveness/impact of the cap | Mike Morris +
Dan Groher | A. 2 months
B. 4 months | A.\$63K**
B. \$30K | | 5 | Physical characterization of the ambient sediment | - design parameter for the cap | - conservative assumption of sediment properties
based on previous experience and data from
comparable sites | sub-bottom profilingCPTcollection of cores for lab analysis | Steve Wolf | A. 1 week
B. 5 months | A. \$3K
B. \$30-120K | | 6 | Gas ebulition | - design parameter for the cap | - literature review of cap design and performance at comparable sites -Perform "sensitivity" analysis to assess gas production rates that would be problematic | - enlist support of an ebulition
specialist + collection of site specfic
data
- possible bench scale test | Dan Groher | TBD | TBD | | 7 | Wave and current energy | - design parameter for the cap | - boat based measurements
- localized hydrodynamic model application
(note that this is being performed to support all Upper Harbor work) | | John Lally | 3 months | \$120K** | | 8 | Ice impacts | - design parameter for the cap | - ice scour model application (note that this is being performed to support all Upper Harbor work) | | Mike Morris +
Tuthill | 1 month | \$12K | | 9 | Construction complexity/impacts | - incorporate into cost estimate
- defensibility of remedy | - review of comparable sites | - if cost estimate is high enough,
perform limited value engineering
study | A. John Lally
B. Corps | A. 2 weeks
B. TBD | A. \$10K
B. TBD | | 10 | Ecological functionality of completed cap and impact on surrounding area | - design parameter for the cap
- defensibility of remedy | definition of biologically active zone review of comparable sites calculation in changes to riverway cross sectional area | - incorporation into updated functions and values assessment | Atlantic Ecology
Lab? | A. TBD
B. TBD | A. TBD
B. TBD | | 11 | Presumptive cap design starting
point - Silver Lake (Pittsfield MA) | - similar conditions to NBH - post-cap data indicates highly successful performance | - EPA presents case study | - bench scale study (column tests) using
Aerovox sediments and Silver Lake cap
design - would help evaluate gas
ebulition | Dave Dickerson +
Dan Groher | | TBD |